Model-based Clustering of High-Dimensional Data in Astrophysics
نویسندگان
چکیده
منابع مشابه
Model-based clustering of high-dimensional data: A review
Model-based clustering is a popular tool which is renowned for its probabilistic foundations and its flexibility. However, high-dimensional data are nowadays more and more frequent and, unfortunately, classical model-based clustering techniques show a disappointing behavior in high-dimensional spaces. This is mainly due to the fact that model-based clustering methods are dramatically over-param...
متن کاملModel-based Co-clustering for High Dimensional Sparse Data
We propose a novel model based on the von Mises-Fisher (vMF) distribution for coclustering high dimensional sparse matrices. While existing vMF-based models are only suitable for clustering along one dimension, our model acts simultaneously on both dimensions of a data matrix. Thereby it has the advantage of exploiting the inherent duality between rows and columns. Setting our model under the m...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
High-dimensional data clustering
Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that highdimensional data usually live in different low-dimensional subspaces hidden in the original space. This paper presents a family of Gaussian mixture models designed for highdimensional data which combine the ideas of subspace c...
متن کاملClustering for High Dimensional Data: Density based Subspace Clustering Algorithms
Finding clusters in high dimensional data is a challenging task as the high dimensional data comprises hundreds of attributes. Subspace clustering is an evolving methodology which, instead of finding clusters in the entire feature space, it aims at finding clusters in various overlapping or non-overlapping subspaces of the high dimensional dataset. Density based subspace clustering algorithms t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EAS Publications Series
سال: 2016
ISSN: 1633-4760,1638-1963
DOI: 10.1051/eas/1677006